
EFSL

5 EFSL utilities 39
5.1 Notations . 39
5.2 cpo . 39
5.3 cpi . 39
5.4 cpa . 40
5.5 list . 40
5.6 mkdir . 40
5.7 rmfile . 41

6 Developer notes 42
6.1 Integer types . 42
6.2 Debugging . 42

6.2.1 Debugging on Linux . 42
6.2.2 Debugging on AVR . 43
6.2.3 Debugging on DSP . 43

6.3 Adding support for a new endpoint 43
6.3.1 hwInterface . 45
6.3.2 if initInterface . 45
6.3.3 if readBuf . 46
6.3.4 if writeBuf . 46

6.4 I/O Manager . 47
6.4.1 General operation . 47
6.4.2 Cache decisions . 47
6.4.3 Functions . 48

6.5 C library for EFSL . 51

1 Preface

1.1 Project aims

The EFSL project aims to create a library for filesystems, to be used on various

2 Getting started

2.1 On Linux (file)

Debugging efsl on embedded devices is a rather hard job, because you can’t just
printf debug strings or watch memory maps easily. Because of that, core devel-
opment has been performed under the Linux operating system. Under Linux,
efsl can be compiled as library and used as a userspace filesystem handler. On
Unix- style operating system (like Linux), all devices (usb stick, disc, . . .) can
be seen as a file, and as such been opened by efsl.

In the following section, we will explain how to get started using efsl as userspace

2.2 On AVR (SD-Card)

This section describes how to implement Efsl on a AVR µC connected to an SD-

Connect the following lines on the SD-
card:

• Pin 9 (DAT2) - NC
(or pull-up to 3.3V)

• Pin 1 (CD) - Any pin on the At-
mega128

• Pin 2 (CMD) - MOSI
(pin 12 on the Atmega128)

• Pin 3 (Vss) - GND

• Pin 4 (Vdd) - +3.3V

• Pin 5 (CLK) - SCK
(pin 11 on the Atmega128)

• Pin 6 (Vss) - GND

• Pin 7 (DAT0) - MISO
(pin 12 on the Atmega128)

• Pin 8 (DAT1) - NC
(or pull-up to 3.3V)

Remark: this schematic includes
pull-up’s to 3.3V, which can be left off.

Remark 1: Mak 0 -11.95 a.3eeat95 a.3y7rk our4.54/F9 77.69 -3145.2.435

First, create a new directory in which you put the compiled efsl-library (

• Line 7: The object efs is created, this object will contain information
about the hardware layer, the partition table and the disc.

• Line 8: The objects file r and file w are created, these objects will
contain information about the files that we will open on the efs-object.

• Line 9: A buffer of 512 bytes is allocated. This buffer will be used for
reading and writing blocks of data.

• Line 12: Call of efs init() , which will initialize the efs-object. To this
function we pass:

1. A pointer to the efs-object.

2. A pointer to the file that contains the partition table / file system
(in this example, we select a device as file).

If this function returns 0, it means that a valid fat partition is found on
the SD-card connected. If no valid fat-filesystem is found, or the file does
not exist, the function returns a negative value. In this example we then
go to an infinite loop to prevent the program to continue.

• the 20:or

2.2.4 Testing

So now let’s test the program:

1. Make sure that your directory contains both the example from above called
avrtest.c and the library libefsl.a .

2. Compile the program:

• On Linux (with avr-gcc): avr-gcc -I/home/user/efsl/inc/ -I/home/user/efsl/conf
-ffreestanding -mmcu=atmega128 -Os -o avrtest.o avrtest.c -L./ -lefsl

• On Windows (with WinAVR): avr-gcc -Ic:\efsl\inc -Ic:\efsl\conf -
ffreestanding -mmcu=atmega128 -Os -o avrtest.o avrtest.c -L.\ -lefsl

3.

2.3.2 McBSP configuration

McBSP Register Explanations
SPCR Serial Port Control Register

Name Bit Value Value (0x00001800 | 0x00410001)
RRST 0 1b The serial port receiver is enabled
XRST 16 1b The serial port transmitter is enabled

2.4 On ARM7 (SD-Card)

This section describes how the ARM7 port of EFSL works. This documentation
was written by Martin Thomas, as is the port to the ARM7 and the examples
included with EFSL. The examples are pretty large, so we will not print them
here, they have their own subdirectory in the examples sections and should be
quite understandable.

Please note that the LPC2000 interface is Copyright (c) by Martin Thomas,
Kaiserslautern, Germany.

2.4.1 License

1. Example lpc2138

3 Configuring EFSL

On architectures that do have the alignment problem, you should turn this flag
off. Failure to do so will result in undefined behavior.

3.3 Cache configuration

This section is dedicated to configuring the cache memory for the library. Caching
is performed by the IOMan object, see section 6.4.

IOMAN NUMBUFFER

This number determines how much memory will be used for caching. Since this
is sector based one IOMAN NUMBUFFER

3.5 Endianness

The Microsoft FAT filesystem was originally created to be run on Intel compat-
ible hardware. Therefore the Microsoft programmers decided to record all data
on the disc in little endian format. Our library supports running on big endian
devices. Here you can select whether your target CPU is little or big endian.

Running on big endian will cause some performance lose because (rather simple)

• On AVR debug will be sent over a selected UART
Make sure youT

4.2 efs

4.4 file

25 fs umount(& e f s . myFs) ;
26 }

4.5 file read

Purpose

Reads a file and puts it’s content in a buffer.

Prototype

euint32 file read (File *file, euint32 size, euint8 *buf);

Arguments

24 DBG((TXT(” F i l e opened f o r read ing .\n”))) ;
25

26 /∗ Write b u f f e r to f i l e ∗/
27 i f (f i l e

4.7 mkdir

Purpose

Creates a new directory.

Prototype

esint8 mkdir(FileSystem *fs,eint8* dirname);

Arguments

Objects passed to mkdir :

• fs : pointer to the FileSystem object

• dir : pointer to the path + name of the new directory

Return value

Returns 0 if no errors are detected.

Returns non-zero if an error is detected:

• Returns -1 if the directory already exists.

•

18 mkdir(& e f s l . myFs , ” d i r 1 / subdi r2 ”) ;
19 mkdir(& e f s l . myFs , ” d i r 1 / subdi r3 ”) ;
20 }
21

22 /∗ Close f i l e s y s t e m ∗/
23 fs

4.8 ls openDir

Purpose

This function opens a directory for viewing, allowing you to iterate through it’s
contents.

Prototype

esint8 ls

21 l i s t

4.10 rmfile

Purpose

Deletes a file.

Prototype

esint16 rmfile(FileSystem *fs,euint8* filename);

Arguments

Objects passed to rmfile :

• fs : pointer to the FileSystem object

• filename : pointer to the path + name of the file to be removed

Return value

Returns 0 if no errors are detected.

Returns non-zero if an error is detected, most likely that the file does not exist.

Note

If you have opened a file with fopen() , and you wish to delete it, first close

18

19 /∗ Close f i l e s y s t e m ∗/
20 fs umount(& e f s l . myFs) ;
21 }

38

4.11 Getting the free space

To get the free space left on EFSL 0.2 is a bit tricky. This feature was imple-
mented after it had gone into stable, so it couln’t interfere with other library
functions.

5 EFSL utilities

5.1 Notations

The utilities can be compiled and run on any POSIX compliant system. Al-

sourcefile on your local filesystem. The third argument (

6 Developer notes

6.1 Integer types

• Initialize the hardware

• Read sectors from disc

• Write sectors to disc

All requests are sectorbased, a sector is a 512 byte piece from the disc, that is

6. Add your object file to the Makefile Take the Makefile that works best on
your platform (they should all work with GNU/Make), or create a new
one, using the existing one’s as a template. Make sure to include your new
pigeon object to the library. If you have an ’ar’ like utility you can create
a static library, else you may have to create a new project containing all
required source files.

The basic framework is now complete, now all that’s left to do is to write the
code that will perform the actual flying work.

6.3.1 hwInterface

This structure represents the underlying hardware. There are some field that

11

12 /∗ I n i t i a l i z e hardware ∗/
13 f e e d (hw−>pigeon) ;
14 pet (hw−>pigeon) ;
15

16 /∗ Get s e c t o r s count ∗/
17

6.4 I/O Manager

The IOManager that is the second lowest layer of the embedded filesystems
library is responsible for coordinating disk input and output, as well as managing
a caching system. This documentation describes the second implementation of
IOMan, which includes features such as :

• Delayed write

• Buffer reference statistics

• Buffer exportable to users

• Support for cached direct I/O as well as indirect I/O

• Can allocate memory itself (on the stack), or you can do it yourself (heap)

3.

7 Legal notes

distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source

libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies (y)-5’sn are n5t

application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user’s computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is

